Sync public subset from Flux (private)

This commit is contained in:
Gitea CI
2025-10-06 20:14:13 +00:00
parent 272e77c536
commit b2d00af0e1
390 changed files with 152131 additions and 0 deletions

0
include/modules/.gitkeep Normal file
View File

40
include/modules/field1d.h Normal file
View File

@@ -0,0 +1,40 @@
#pragma once
#include "utils/vector.h"
#include "modules/grid1d.h"
namespace fvm {
template <typename T>
struct Field1D{
const Grid1D* grid = nullptr; // not owning
utils::Vector<T> u; // size = grid->N
Field1D() = default;
explicit Field1D(const Grid1D& g, double init = 0.0) : grid(&g), u(g.N){
}
void generate_vertices(){
vertices.resize(N_vertices);
vertices[0] = centers[0] - ((centers[1] - centers[0])*0.5);
vertices[N_vertices-1] = centers[N_centers-1] + ((centers[N_centers-1] - centers[N_centers-2])*0.5);
for (uint64_t i = 1; i < N_centers; ++i){
vertices[i] = (centers[i-1] + centers[i])*0.5;
}
}
T dx(uint64_t i) const { check(i); return vertices(i+1) - vertices(i); }
T center(uint64_t i) const { check(i); return centers(i); }
private:
void check(uint64_t i) const {
if (i >= N_centers) throw std::runtime_error("Grid1D: cell index out of range");
}
};
}

View File

@@ -0,0 +1,58 @@
#pragma once
#include "modules/grid1d.h"
namespace fd1d {
// -----------------------------------------------------------------------------
// Second derivative (u_xx) at interior cell i, central difference
// Works on NON-uniform grids
// On uniform: (u[i-1] - 2 u[i] + u[i+1]) / dx^2
// -----------------------------------------------------------------------------
template <typename T>
void inplace_Build_CentralDerivative_Matrix(const fvm::Grid1D<T>& g, utils::Matrix<T>& A, utils::Vector<T>& b, const utils::Vector<T>& s, const T& c){
for (uint64_t i = 1; i < g.center_idx; ++i){
A(i,i-1) = -(c/(g.centers[i] - g.centers[i-1]));
A(i,i) = -((c/(g.centers[i+1] - g.centers[i])) + (c/(g.centers[i] - g.centers[i-1])));
A(i,i+1) = -(c/(g.centers[i+1] - g.centers[i]));
b[i] = -s[i]*(g.vertices[i+1] - g.vertices[i]);
}
}
template <typename T>
utils::Matrix<T> Build_CentralDerivative_Matrix(const fvm::Grid1D<T>& g, utils::Vector<T>& b, const utils::Vector<T>& s, const T& c){
utils::Matrix<T> A(g.center_idx+1, g.center_idx+1, T{0});
inplace_Build_CentralDerivative_Matrix(g, A, b, s, c);
return A;
}
template <typename T>
void inplace_BC_Dirichlet(const fvm::Grid1D<T>& g, utils::Matrix<T>& A, utils::Vector<T>& b, const utils::Vector<T>& s, const T& c){
A(0,0) = -((c/(g.centers[1] - g.centers[0])) + (c/(g.centers[0] - g.vertices[0])));
A(0,1) = c/(g.centers[1] - g.centers[0]);
A(g.center_idx, g.center_idx-1) = c/(g.centers[g.center_idx]-g.centers[g.center_idx-1]);
A(g.center_idx, g.center_idx) = -((c/(g.vertices[g.vertices_idx] - g.centers[g.center_idx])) + (c/(g.centers[g.center_idx] - g.centers[g.center_idx-1])));
}
template <typename T>
void inplace_BC_Neumann(const fvm::Grid1D<T>& g, utils::Matrix<T>& A, const T& c){
A(0,0) = -c/(g.centers[1]-g.centers[0]);
A(0,1) = c/(g.centers[1]-g.centers[0]);
A(g.center_idx, g.center_idx-1) = c/(g.centers[g.center_idx]-g.centers[g.center_idx-1]);
A(g.center_idx, g.center_idx) = -c/(g.centers[g.center_idx]-g.centers[g.center_idx-1]);
}
}

View File

@@ -0,0 +1,129 @@
#pragma once
#include "modules/mesh/mesh1d.h"
#include "core/global_config.h"
#include "utils/matrix.h"
#include "utils/vector.h"
namespace fluids {
template <typename T>
struct Diffusion1D{
const core::Configs<T>& cfg;
const mesh::Mesh1D<T>& mesh;
T Gamma{1};
// Constructor
Diffusion1D(const core::Configs<T>& configs, const mesh::Mesh1D<T>& Mesh, T Gamma_const=T(1)): cfg(configs), mesh(Mesh), Gamma(Gamma_const) {}
void assemble(utils::Matrix<T>& A, utils::Vector<T>& b, utils::Vector<T>& s){
uint64_t N = mesh.center_idx + 1;
if (N < 3){
throw std::runtime_error("Diffusion1D: need N>=3");
}
if (A.rows() != N || A.cols() != N){
A = utils::Matrix<T>(N, N, T(0));
}
if (b.size() != N){
b = utils::Vector<T>(N, T(0));
}
if (cfg.grid == core::GridKind::Uniform){
// Core of A
if (cfg.fd == core::FDKind::Central){
uniform_central_finite_diffrence_2_order(A,b,s);
}
// Left BC of A
if (cfg.left.kind == core::BCKind::Dirichlet){
BC_uniform_backward_finite_diffrence_2_order_Dirichlet(A,b,s);
}else if (cfg.left.kind == core::BCKind::Neumann){
BC_uniform_backward_finite_diffrence_2_order_Neumann(A,b,s);
}
}
}
void uniform_central_finite_diffrence_2_order(utils::Matrix<T>& A, utils::Vector<T>& b, utils::Vector<T>& s){
T xm, xc, xp;
for (uint64_t i = 1; i < mesh.center_idx; ++i){
xm = mesh.center(i-1);
xc = mesh.center(i);
xp = mesh.center(i+1);
A(i, i-1) = Gamma/(xc - xm);
A(i, i) = -((Gamma/(xp - xc)) + (Gamma/(xc - xm)));
A(i, i+1) = Gamma/(xp - xc);
b[i] = -s[i]*mesh.dx(i);
}
}
void BC_uniform_backward_finite_diffrence_2_order_Dirichlet(utils::Matrix<T>& A, utils::Vector<T>& b, utils::Vector<T>& s){
T xm;
T xw = mesh.vertice(0);
T xc = mesh.center(0);
T xp = mesh.center(1);
T xe;
uint64_t N = mesh.center_idx;
A(0, 0) = -((Gamma/(xp - xc)) + (Gamma/(xc - xw)));
A(0, 1) = Gamma/(xp - xc);
b[0] = -s[0]*mesh.dx(0) - Gamma*(cfg.left.value/(xc - xw));
xm = mesh.center(N-1);
xc = mesh.center(N);
xe = mesh.vertice(N+1);
A(N, N-1) = Gamma/(xc - xm);
A(N, N) = -((Gamma/(xe - xc)) + (Gamma/(xc - xm)));
b[N] = -s[N]*mesh.dx(N) - Gamma*(cfg.right.value/(xe - xc));
A.print();
b.print();
}
void BC_uniform_backward_finite_diffrence_2_order_Neumann(utils::Matrix<T>& A, utils::Vector<T>& b, utils::Vector<T>& s){
T xm;
T xc = mesh.center(0);
T xp = mesh.center(1);
uint64_t N = mesh.center_idx;
A(0, 0) = -Gamma/(xp - xc);
A(0, 1) = Gamma/(xp - xc);
b[0] = -s[0]*mesh.dx(0) - (Gamma*cfg.left.value);
xm = mesh.center(N-1);
xc = mesh.center(N);
A(N, N-1) = Gamma/(xc - xm);
A(N, N) = -Gamma/(xc - xm);
b[N] = -s[N]*mesh.dx(N) - Gamma*(cfg.right.value);
A.print();
b.print();
}
};
} // end namespace fluids

View File

@@ -0,0 +1,5 @@
#pragma once
#include "modules/fluids/diffusion1d.h"

View File

@@ -0,0 +1,4 @@
#pragma once
#include "modules/mesh/mesh1d.h"

View File

@@ -0,0 +1,42 @@
#pragma once
#include "utils/vector.h"
namespace mesh {
template <typename T>
struct Mesh1D{
uint64_t center_idx; // max cell index
uint64_t vertices_idx; // max vertice index
utils::Vector<T> centers; // size N (unknowns at cell centers)
utils::Vector<T> vertices; // size N+1 (face positions)
Mesh1D() = default;
explicit Mesh1D(const utils::Vector<T>& midpoints){
centers = midpoints;
center_idx = centers.size()-1;
vertices_idx = centers.size();
}
void generate_vertices(T left, T right){
vertices.resize(vertices_idx+1);
vertices[0] = left;
vertices[vertices_idx] = right;
for (uint64_t i = 1; i < center_idx+1; ++i){
vertices[i] = (centers[i-1] + centers[i])*0.5;
}
}
T dx(uint64_t i) const { check(i); return vertices[i+1] - vertices[i]; }
T center(uint64_t i) const { check(i); return centers[i]; }
T vertice(uint64_t i) const {; return vertices[i]; }
void check(uint64_t i) const {
if (i > center_idx) throw std::runtime_error("Mesh1D: cell index out of range");
}
};
} // end namespace mesh

View File

@@ -0,0 +1,28 @@
#pragma once
#include "./core/omp_config.h"
#include "./utils/vector.h"
#include "./utils/matrix.h"
#include "./utils/random.h"
namespace neural_networks{
template <typename T>
struct activation_ReLU{
utils::Matrix<T> outputs;
void forward(utils::Matrix<T> inputs){
outputs = numerics::max(inputs, T{0});
//outputs.print();
}
};
} // end namespace neural_networks

View File

@@ -0,0 +1,37 @@
#pragma once
#include "./core/omp_config.h"
#include "./utils/vector.h"
#include "./utils/matrix.h"
#include "./numerics/max.h"
#include "./numerics/matsubtract.h"
#include "./numerics/exponential.h"
#include "./numerics/matdiv.h"
namespace neural_networks{
template <typename T>
struct activation_softmax{
utils::Matrix<T> exp_values;
utils::Matrix<T> probabilities;
utils::Matrix<T> outputs;
void forward(const utils::Matrix<T> inputs){
exp_values = numerics::exponential(numerics::matsubtract(inputs, numerics::max(inputs, "rows"), "col"));
probabilities = numerics::matdiv(exp_values, numerics::matsum(exp_values, "col"), "col");
outputs = probabilities;
}
};
} // end namespace neural_networks

View File

@@ -0,0 +1,42 @@
#pragma once
#include "./core/omp_config.h"
#include "./utils/matrix.h"
#include "./utils/vector.h"
#include "./utils/random.h"
//#include <math.h>
namespace neural_networks{
template <typename TX, typename Ty>
void create_spital_data(const uint64_t samples, const uint64_t classes, utils::Matrix<TX>& X, utils::Vector<Ty>& y) {
const uint64_t rows = samples*classes;
TX r, t;
uint64_t row_idx;
if ((rows != X.rows()) || (X.cols() != 2)){
X.resize(samples*classes, 2);
}
if (rows != y.size()){
y.resize(rows);
}
for (uint64_t i = 0; i < classes; ++i){
for (uint64_t j = 0; j < samples; ++j){
r = static_cast<TX>(j)/static_cast<TX>(samples);
t = static_cast<TX>(i)*4.0 + (4.0+r);
row_idx = (i*samples) + j;
X(row_idx, 0) = r*std::cos(t*2.5) + utils::random(TX{-0.15}, TX{0.15});
X(row_idx, 1) = r*std::sin(t*2.5) + utils::random(TX{-0.15}, TX{0.15});
y[row_idx] = static_cast<Ty>(i);
}
}
}
} // end namesoace NN

View File

@@ -0,0 +1,42 @@
#pragma once
#include "./core/omp_config.h"
#include "./utils/vector.h"
#include "./utils/matrix.h"
#include "./utils/random.h"
namespace neural_networks{
template <typename T>
struct dense_layer{
utils::Matrix<T> weights;
utils::Vector<T> biases;
utils::Matrix<T> outputs;
// Default Constructor
dense_layer() = default;
// Constructor
dense_layer(const uint64_t n_inputs, const uint64_t n_neurons){
weights.random(n_inputs, n_neurons, -1, 1);
biases.resize(n_neurons, T{0});
//weights.print();
//outputs.resize()
}
void forward(utils::Matrix<T> inputs){
outputs = numerics::matadd(numerics::matmul_auto(inputs, (weights)), biases, "row");
}
};
} // end namespace neural_networks

View File

@@ -0,0 +1,34 @@
#pragma once
#include "./core/omp_config.h"
#include "./utils/vector.h"
#include "./utils/matrix.h"
namespace neural_networks{
template <typename Td, typename Ti>
struct Loss{
utils::Matrix<Td> sample_losses;
Td data_losses;
virtual utils::Vector<Td> forward(const utils::Matrix<Td>& output, const utils::Matrix<Ti>& y) = 0;
Td calculate(const utils::Matrix<Td>& output, const utils::Matrix<Ti>& y){
// Calculate sample losses
sample_losses = forward(output, y);
// Calculate mean loss
data_losses = numerics::mean(sample_losses);
return data_losses;
}
};
} // end namespace neural_networks

View File

@@ -0,0 +1,34 @@
#pragma once
#include "./core/omp_config.h"
#include "./utils/vector.h"
#include "./utils/matrix.h"
namespace neural_networks{
template <typename Td, typename Ti>
struct Loss{
utils::Matrix<Td> sample_losses;
Td data_losses;
virtual utils::Vector<Td> forward(const utils::Matrix<Td>& output, const utils::Matrix<Ti>& y) = 0;
Td calculate(const utils::Matrix<Td>& output, const utils::Matrix<Ti>& y){
// Calculate sample losses
sample_losses = forward(output, y);
// Calculate mean loss
data_losses = numerics::mean(sample_losses);
return data_losses;
}
};
} // end namespace neural_networks

View File

@@ -0,0 +1,12 @@
// #include "./modules/neural_networks/neural_networks.h"
#pragma once
#include "datasets/spiral.h"
#include "layers/dense_layer.h"
#include "activation_functions/ReLU.h"
#include "activation_functions/Softmax.h"
#include "loss/loss.h"