#pragma once #include "modules/grid1d.h" namespace fd1d { // ----------------------------------------------------------------------------- // Second derivative (u_xx) at interior cell i, central difference // Works on NON-uniform grids // On uniform: (u[i-1] - 2 u[i] + u[i+1]) / dx^2 // ----------------------------------------------------------------------------- template void inplace_Build_CentralDerivative_Matrix(const fvm::Grid1D& g, utils::Matrix& A, utils::Vector& b, const utils::Vector& s, const T& c){ for (uint64_t i = 1; i < g.center_idx; ++i){ A(i,i-1) = -(c/(g.centers[i] - g.centers[i-1])); A(i,i) = -((c/(g.centers[i+1] - g.centers[i])) + (c/(g.centers[i] - g.centers[i-1]))); A(i,i+1) = -(c/(g.centers[i+1] - g.centers[i])); b[i] = -s[i]*(g.vertices[i+1] - g.vertices[i]); } } template utils::Matrix Build_CentralDerivative_Matrix(const fvm::Grid1D& g, utils::Vector& b, const utils::Vector& s, const T& c){ utils::Matrix A(g.center_idx+1, g.center_idx+1, T{0}); inplace_Build_CentralDerivative_Matrix(g, A, b, s, c); return A; } template void inplace_BC_Dirichlet(const fvm::Grid1D& g, utils::Matrix& A, utils::Vector& b, const utils::Vector& s, const T& c){ A(0,0) = -((c/(g.centers[1] - g.centers[0])) + (c/(g.centers[0] - g.vertices[0]))); A(0,1) = c/(g.centers[1] - g.centers[0]); A(g.center_idx, g.center_idx-1) = c/(g.centers[g.center_idx]-g.centers[g.center_idx-1]); A(g.center_idx, g.center_idx) = -((c/(g.vertices[g.vertices_idx] - g.centers[g.center_idx])) + (c/(g.centers[g.center_idx] - g.centers[g.center_idx-1]))); } template void inplace_BC_Neumann(const fvm::Grid1D& g, utils::Matrix& A, const T& c){ A(0,0) = -c/(g.centers[1]-g.centers[0]); A(0,1) = c/(g.centers[1]-g.centers[0]); A(g.center_idx, g.center_idx-1) = c/(g.centers[g.center_idx]-g.centers[g.center_idx-1]); A(g.center_idx, g.center_idx) = -c/(g.centers[g.center_idx]-g.centers[g.center_idx-1]); } }