57 lines
1.5 KiB
C++
57 lines
1.5 KiB
C++
#pragma once
|
|
|
|
#include "./core/omp_config.h"
|
|
|
|
#include "./utils/vector.h"
|
|
#include "./utils/matrix.h"
|
|
|
|
#include "./numerics/matmax.h"
|
|
#include "./numerics/matsubtract.h"
|
|
#include "./numerics/matexp.h"
|
|
#include "./numerics/matdiv.h"
|
|
|
|
|
|
|
|
namespace neural_networks{
|
|
|
|
template <typename T>
|
|
struct Activation_Softmax{
|
|
|
|
//utils::Matrix<T> exp_values;
|
|
//utils::Matrix<T> probabilities;
|
|
utils::Matrix<T> outputs;
|
|
|
|
utils::Matrix<T> dinputs;
|
|
|
|
void forward(const utils::Matrix<T>& inputs){
|
|
|
|
// Get unnormalized probabilities
|
|
utils::Matrix<T> exp_values = numerics::matexp(numerics::matsubtract(inputs, numerics::matmax(inputs, "rows"), "col"));
|
|
|
|
// Normalize them for each sample
|
|
utils::Matrix<T> probabilities = numerics::matdiv(exp_values, numerics::matsum(exp_values, "col"), "col");
|
|
outputs = probabilities;
|
|
}
|
|
|
|
void backward(const utils::Matrix<T>& dvalues){
|
|
|
|
const uint64_t rows = dvalues.rows();
|
|
const uint64_t cols = dvalues.cols();
|
|
|
|
if ((dinputs.rows() != rows) || dinputs.cols() != cols){
|
|
dinputs.resize(rows, cols);
|
|
}
|
|
|
|
for (uint64_t i = 0; i < rows; ++i){
|
|
T dot = T{0};
|
|
for (uint64_t j = 0; j < cols; ++j){
|
|
dot += outputs(i,j) * dvalues(i,j);
|
|
}
|
|
for (uint64_t j = 0; j < cols; ++j){
|
|
dinputs(i,j) = outputs(i,j) * (dvalues(i,j) - dot);
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
} // end namespace neural_networks
|