42 lines
1008 B
C++
42 lines
1008 B
C++
#pragma once
|
|
|
|
#include "./core/omp_config.h"
|
|
#include "./utils/matrix.h"
|
|
#include "./utils/vector.h"
|
|
#include "./utils/random.h"
|
|
|
|
//#include <math.h>
|
|
|
|
|
|
namespace neural_networks{
|
|
|
|
template <typename TX, typename Ty>
|
|
void create_spital_data(const uint64_t samples, const uint64_t classes, utils::Matrix<TX>& X, utils::Matrix<Ty>& y) {
|
|
|
|
const uint64_t rows = samples*classes;
|
|
TX r, t;
|
|
uint64_t row_idx;
|
|
|
|
|
|
if ((rows != X.rows()) || (X.cols() != 2)){
|
|
X.resize(samples*classes, 2);
|
|
}
|
|
if (rows != y.rows()){
|
|
y.resize(rows, 1);
|
|
}
|
|
|
|
for (uint64_t i = 0; i < classes; ++i){
|
|
for (uint64_t j = 0; j < samples; ++j){
|
|
r = static_cast<TX>(j)/static_cast<TX>(samples);
|
|
t = static_cast<TX>(i)*4.0 + (4.0+r);
|
|
row_idx = (i*samples) + j;
|
|
|
|
X(row_idx, 0) = r*std::cos(t*2.5) + utils::random(TX{-0.15}, TX{0.15});
|
|
X(row_idx, 1) = r*std::sin(t*2.5) + utils::random(TX{-0.15}, TX{0.15});
|
|
y(row_idx, 0) = static_cast<Ty>(i);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
} // end namesoace NN
|