Sync public subset from Flux
This commit is contained in:
@@ -11,30 +11,47 @@
|
||||
#include "./numerics/matdiv.h"
|
||||
|
||||
|
||||
|
||||
namespace neural_networks{
|
||||
|
||||
template <typename T>
|
||||
struct Activation_Softmax{
|
||||
|
||||
utils::Matrix<T> exp_values;
|
||||
utils::Matrix<T> probabilities;
|
||||
//utils::Matrix<T> exp_values;
|
||||
//utils::Matrix<T> probabilities;
|
||||
utils::Matrix<T> outputs;
|
||||
|
||||
utils::Matrix<T> dinputs;
|
||||
|
||||
void forward(const utils::Matrix<T>& inputs){
|
||||
|
||||
// Get unnormalized probabilities
|
||||
exp_values = numerics::matexp(numerics::matsubtract(inputs, numerics::matmax(inputs, "rows"), "col"));
|
||||
utils::Matrix<T> exp_values = numerics::matexp(numerics::matsubtract(inputs, numerics::matmax(inputs, "rows"), "col"));
|
||||
|
||||
// Normalize them for each sample
|
||||
probabilities = numerics::matdiv(exp_values, numerics::matsum(exp_values, "col"), "col");
|
||||
|
||||
|
||||
utils::Matrix<T> probabilities = numerics::matdiv(exp_values, numerics::matsum(exp_values, "col"), "col");
|
||||
outputs = probabilities;
|
||||
|
||||
}
|
||||
|
||||
void backward(const utils::Matrix<T>& dvalues){
|
||||
|
||||
const uint64_t rows = dvalues.rows();
|
||||
const uint64_t cols = dvalues.cols();
|
||||
|
||||
if ((dinputs.rows() != rows) || dinputs.cols() != cols){
|
||||
dinputs.resize(rows, cols);
|
||||
}
|
||||
|
||||
for (uint64_t i = 0; i < rows; ++i){
|
||||
T dot = T{0};
|
||||
for (uint64_t j = 0; j < cols; ++j){
|
||||
dot += outputs(i,j) * dvalues(i,j);
|
||||
}
|
||||
for (uint64_t j = 0; j < cols; ++j){
|
||||
dinputs(i,j) = outputs(i,j) * (dvalues(i,j) - dot);
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
|
||||
} // end namespace neural_networks
|
||||
@@ -0,0 +1,68 @@
|
||||
#pragma once
|
||||
|
||||
#include "./core/omp_config.h"
|
||||
|
||||
#include "./utils/vector.h"
|
||||
#include "./utils/matrix.h"
|
||||
|
||||
#include "./numerics/matmax.h"
|
||||
#include "./numerics/matsubtract.h"
|
||||
#include "./numerics/matexp.h"
|
||||
#include "./numerics/matdiv.h"
|
||||
|
||||
#include "./modules/neural_networks/activation_functions/Activation_Softmax.h"
|
||||
#include "./modules/neural_networks/loss/Loss_CategoricalCrossentrophy.h"
|
||||
|
||||
|
||||
namespace neural_networks{
|
||||
|
||||
template <typename Td, typename Ti>
|
||||
struct Activation_Softmax_Loss_CategoricalCrossentropy{
|
||||
|
||||
neural_networks::Activation_Softmax<Td> activation;
|
||||
neural_networks::Loss_CategoricalCrossentrophy<Td, Ti> loss;
|
||||
|
||||
//utils::Matrix<T> exp_values;
|
||||
//utils::Matrix<T> probabilities;
|
||||
utils::Matrix<Td> outputs;
|
||||
utils::Matrix<Td> dinputs;
|
||||
|
||||
utils::Vector<Td> forward(const utils::Matrix<Td>& inputs, const utils::Matrix<Ti>& y_true){
|
||||
|
||||
// Output layer's activation function
|
||||
activation.forward(inputs);
|
||||
// Set the output
|
||||
outputs = activation.outputs;
|
||||
// Calculate and return loss value
|
||||
Td data_loss = loss.calculate(inputs, y_true);
|
||||
return data_loss;
|
||||
}
|
||||
|
||||
void backward(const utils::Matrix<Td>& dvalues, const utils::Matrix<Ti>& y_true){
|
||||
|
||||
// Number of samples
|
||||
const uint64_t samples = y_true.rows();
|
||||
|
||||
// If the labels are one-hot encoded,
|
||||
// turn them into discrete values
|
||||
|
||||
const uint64_t rows = dvalues.rows();
|
||||
const uint64_t cols = dvalues.cols();
|
||||
|
||||
if ((dinputs.rows() != rows) || dinputs.cols() != cols){
|
||||
dinputs.resize(rows, cols);
|
||||
}
|
||||
|
||||
for (uint64_t i = 0; i < rows; ++i){
|
||||
Td dot = Td{0};
|
||||
for (uint64_t j = 0; j < cols; ++j){
|
||||
dot += outputs(i,j) * dvalues(i,j);
|
||||
}
|
||||
for (uint64_t j = 0; j < cols; ++j){
|
||||
dinputs(i,j) = outputs(i,j) * (dvalues(i,j) - dot);
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
} // end namespace neural_networks
|
||||
Reference in New Issue
Block a user