Files
2025-10-20 12:24:21 +00:00

57 lines
1.5 KiB
C++

#pragma once
#include "./core/omp_config.h"
#include "./utils/vector.h"
#include "./utils/matrix.h"
#include "./numerics/matmax.h"
#include "./numerics/matsubtract.h"
#include "./numerics/matexp.h"
#include "./numerics/matdiv.h"
namespace neural_networks{
template <typename T>
struct Activation_Softmax{
//utils::Matrix<T> exp_values;
//utils::Matrix<T> probabilities;
utils::Matrix<T> outputs;
utils::Matrix<T> dinputs;
void forward(const utils::Matrix<T>& inputs){
// Get unnormalized probabilities
utils::Matrix<T> exp_values = numerics::matexp(numerics::matsubtract(inputs, numerics::matmax(inputs, "rows"), "col"));
// Normalize them for each sample
utils::Matrix<T> probabilities = numerics::matdiv(exp_values, numerics::matsum(exp_values, "col"), "col");
outputs = probabilities;
}
void backward(const utils::Matrix<T>& dvalues){
const uint64_t rows = dvalues.rows();
const uint64_t cols = dvalues.cols();
if ((dinputs.rows() != rows) || dinputs.cols() != cols){
dinputs.resize(rows, cols);
}
for (uint64_t i = 0; i < rows; ++i){
T dot = T{0};
for (uint64_t j = 0; j < cols; ++j){
dot += outputs(i,j) * dvalues(i,j);
}
for (uint64_t j = 0; j < cols; ++j){
dinputs(i,j) = outputs(i,j) * (dvalues(i,j) - dot);
}
}
}
};
} // end namespace neural_networks